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Simple sequence repeats (SSRs) or short tandem repeats are short repeat motifs that show high
level of length polymorphism due to insertion or deletion mutations of one or more repeat types.
Here, we present the detection and abundance of microsatellites or SSRs in nucleotide sequences
of Gentianaceae family. A total of 545 SSRs were mined in 4698 nucleotide sequences downloaded DOI:
from the National Center for Biotechnology Information (NCBI). Among the SSR sequences, the
frequency of repeat type was about 429 -mono repeats, 99 -di repeats, 15 -tri repeats, and 2
—-hexa repeats. Mononucleotide repeats were found to be abundant repeat types, about 78%,
followed by dinucleotide repeats (18.16%) among the SSR sequences. An attempt was made to
design primer pairs for 545 identified SSRs but these were found only for 169 sequences.
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INTRODUCTION

Gentianaceae, or the Gentian family, is a family of flowering
plants of 87 genera and over 1650 species.!! Plants are
usually rhizomatous. These are annuals or perennials,
mostly upright though a few species lie on the ground and
have upright branch tips. Leaves are opposite or whorled
with entire edges and bases connately attached to the
stem, mostly without a petiole. Flowers have four to five
sepals, petals, and stamens, but only one pistil. Sepals and
petals are fused at the base, with four to five free lobes
above. Stamens alternate with the corolla lobes. Ovary is
superior; fruit is a capsule. Stipules is absent. Plants usually
accumulate bitter iridoid substances; bicollateral bundles
are present. The fruits are dehiscent septicidal capsules
splitting into two halves. The Gentianaceae contains many
species with interesting phytochemical properties. They
have been widely used in traditional medicine and also as
constituents in bitters and similar concoctions. The family
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consists of trees, shrubs, and herbs showing a wide range
of colors and floral patterns.

Simple sequence repeats (SSRs),” or microsatellites? or
short tandem repeats,* are short (1-6 bp) repeat motifs
that show a high level of length polymorphism due to
insertion or deletion mutations of one or more repeat
types.”! Studies suggest that both protein coding and
noncoding regions of DNA sequences contain SSRs.!
SSRs present in coding sequences are less polymorphic
than those in the genomic sequences. Moreover, different
taxon varies in abundance of different types of SSRs
and these are present in greater abundance in noncoding
regions than coding SSRs.I" The SSRs are either developed
conventionally® or from sequence databases.”’ PCR-based
techniques such as AFLP and microsatellites or SSRs have
also played important roles in plant DNA profiling. Primers
are essential components of PCR-based systems as well
as modern microarray systems which utilize appropriate
probes for PCR amplification.!"!

In genetics, a sequence motif is a nucleotide or amino acid
sequence pattern that is widespread and is believed to have,
a biological significance. When a sequence motif appears
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in the exon of a gene, it may encode the "structural motif"
of a protein, that is, a stereotypical element of the overall
structure of the protein. "Noncoding" sequences are not
translated into proteins. Outside of gene exons, there exist
regulatory sequence motifs and motifs within the "junk,"
such as satellite DNA."! Robinson e a/!'"! developed a
computer program to identify and design PCR primers
for amplification of SSR loci based on available DNA
sequence information. SSR primers have been designed
using publicly available expressed sequence tags (ESTs)
in batley,”! almond (Prunus communis Fritsch.), and peach
(P. persica (L.) Batsch.)," T. aestivum, and O. Sativa."
These SSRs are useful as molecular markers because their
development is inexpensive, they represent transcribed
genes, and their putative function can often be deduced
by a homology search.I'” SSRs have been the backbone to
creating molecular maps for a number of years.

The increasing number of genomic and expressed
sequences in public databases provides a valuable source
for bioinformatical data mining. However, there are a
number of exciting application of these sequence data; used
in comparative genome analysis — to trace the evolution
among the related species, to study the genome structure
and their gene functions. Comparative genome analysis
requires the same sets of genes (i.e., cross-reference genes)
to be mapped to chromosomes in the species compared.
Thus, comparative maps with sets of EST-derived markers
(i.e., cross-species markers) are essential for comparative
genome analysis. Several studies have utilized publicly
available ESTSs to mine SSRs or microsatellites markers for
plants,'" catfish,! insects,” animals*! and human.!
The EST-derived SSR markers (EST-SSRs) have proved
very useful for the construction of genetic and comparative
maps.” The software used here is MISA, a microsatellite
identifying tool which has the advantage of detecting the
mono- to decamer repeats and also compound repeats.
But it has the disadvantage of inability to detect above
decanucleotide repeats. Riju and Arunachalam,” mined the
SSRs in oil palm ESTSs with five different software and have
reported that MISA program has given maximum coverage
of SSRs in both oil palm ESTs and Contigs.

PCR primer design in general

Understanding of primer properties is very important for
primer design. The major aspects of primer properties
include specificity, melting temperature (T ), and
intraprimer or interprimer homology. Primer specificity is
mostly determined by the 3'-end sequences. It was reported
that single internal mismatches had no significant effect
on PCR product yield while the 3'-terminal mismatches,
especially the A:A, A:G, G:A, and C:C mismatches,
markedly reduced overall PCR product yield.”" Khabar e
al.P* assessed the annealing specificity of primers in PCR
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reactions under different annealing temperatures (35°C,
40°C, and 45°C) and found petfect matches between at
least cight bases at the 3"-end of the 5-primers and the
target region, whereas mispriming occurred only toward
the 5'-end. Therefore it is critical to include 8—10 unique
bases at the 3"-end of the primer.

Ideally the primer hasa T _in the range of 50-65°C, random
nucleotide composition with a 40-60% GC-content, and
18-30 bases long. The intraprimer or interprimer homology
is kept as low as possible to avoid formation of hairpin
structures or primer dimmers (>3 bp complementarities
between primers) which otherwise will interfere with
annealing of primer to the DNA template.”

ESTs, which represent the expressed part of genome, also
serve as a source of SSRs.l Detection of SSRs facilitates
the development of SSR markers that are useful in the study
of genetic variation, gene tagging, and linkage mapping,’”
and are also useful across a number of related species.
31 Microsatellites can be amplified for identification by
the polymerase chain reaction (PCR) process, using the
unique sequences of flanking regions as primers. Once the
potentially useful microsatellites are determined (removing
nonuseful ones such as those with random inserts within
the repeat region), the flanking sequences can be used
to design oligonucleotide primers which will amplify the
specific microsatellite repeat in a PCR. Microsatellite loci
are widely distributed throughout the genome and can be
isolated from semidegraded DNA of older specimens, as
all that is needed is a suitable substrate for amplification
through PCR. Hence, the present study was to find out the
distribution and abundance of SSRs for the development
of markers and to annotate SSR-containing sequence in
Gentianaceae family. Nucleotide database, which contains
sequences of well-characterized genes as well as hundreds
of thousands novel EST sequences, was retrieved to
perform the analysis.

MATERIALS AND METHODS

Retrieval of nucleotide sequences and detection of
SSRs

A total of 647 nucleotide sequences of Gentianaceae were
downloaded from the NCBI (http://www.ncbi.nlm.nih.
gov/Nucleotide/?term=Gentianaceae) and harvested for
SSRs using a perl script. The minimum length of SSR was
fixed at 14 bp according to the criteria used by Gupta ez
al.P"" The SSRs were defined as 14-bp mononucleotide
or dinucleotide repeats; 15-bp trinucleotide repeats; 16
tetranucleotide repeats; 20 pentanucleotide repeats; 18
hexanucleotide repeats. The poly A and poly T repeats
were removed by using an inhouse developed perl script,
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as these are not considered as SSRs due to their presence
at 3'-end of mRNA/cDNA sequences.

Primer designing for SSRs

A pair of primer flanking each SSR was designed using
FastPCR software available at www-genome.wi.mit.edu/
cgi-bin/primer/primer3_www.cgi, which takes input
according to user-defined conditions and pick primers
according to these specified parameters. Default parameters
of the FastPCR, viz, the optimum primer size of 20.0 (the
range was 18-28), the optimum annealing temperature of
60.0 (the range was 57.0-63.0), and the range of% GC
content of 44—60, were selected for primer designing,

Detection of SSR positions with respect to open
reading frames

Open reading frames (ORFs) are predicted for all the SSR-
containing sequences using ORF finder available at NCBI
(http://www.ncbi.nl m.nih.gov/gorf/gorf.html) using
standard genetic code. Sequence fragments with maximum
length uninterrupted by stop codon were taken as the
primary encoding segment (ORF) of the query sequences.
In all the predicted ORFs, the relative positions of SSRs
were detected, that is, whether the SSR was present within
the ORE in the 5' UTR untranslated region (UTR) or in
the 3' UTR

RESULTS

Screening of Gentianaceae sequences for SSRs

In the present study, 4698 nucleotide sequences of
Gentianaceae available at NCBI (http:/ /www.ncbinlm.nih.
gov) were searched for SSRs with a minimum length of
18 bp. A total of 545 SSRs were detected from 2889 kb of
data mined, excluding poly A and poly T. Depending upon
the length of the repeat unititself (1-6 bp), the lengths of
the identified SSRs varied from 14 to 48 bp, respectively.

Frequencies of classified repeat types of Gentianaceae
From a number of 4698 sequences screened, only a
subset of 461 sequences contained 545 SSRs, suggesting
that merely 9.83% of sequences contained SSRs. The
frequencies of SSRs with mono-, di-, tri-, tetra-, and
hexanucleotide repeat units showed the frequent repeat
type within the nucleotide sequences of Gentiana family
that were found to be in mononucleotide (84.58%) followed
by dinucleotide repeats (18.16%), trinucleotide (2.75%), and
hexanucleotide (0.65%), respectively [Figure 1]. Whereas,
no tetranucleotide and pentanucleotide repeat was detected
during the analysis.

The observed frequency of different repeat types
comprising the SSRs is presented in Figure 2a—d and
summarized in Table 1. SSRs were comprised of four
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Figure 1: Frequency distribution of different repeat types identified in
nucleotide sequences of Gentianaceae

different types of mononucleotide (A,T, C, and G), nine
different types of dinucleotide (CA)n, (TG)n, (AC)n,
(GA)n, (CD)n, (TA)n, (AT)n, (GCO)n, (TC)n, (AG)n, (GT)
n repeats, seven different types of trinucleotide (GAG)
n, (ATG)n, (CTT)n, (TTA)n, (CAA)n, (AAC)n, (ACA)n
repeats, and two types of hexanucleotide (CCACAC)n,
(GGTCAA)n repeats.

Designing of primers for SSRs

Out of 545 SSRs detected, the primers could be designed
only for 169 (31%) SSRs and the rest 376 (69%) sequences
did not produce any acceptable primers. These 169 SSRs
for which primers were designed include 133 mono-, 29
di-, 7 tri-, and no hexanucleotide repeats. The details of the
accession numbers of nucleotide sequences of Gentiana,
repeat motif of SSRs for which primer were designed,
primer sequences, GC%, product size, and annealing
temperature are given in Table 2.

Prediction of ORF in SSR-containing sequences

An attempt was made to predict the ORFs in SSR-
containing sequences using ORF finder. Out of the 545
SSRs identified, the positions of 359 SSRs with respect to
ORF were determined, while for the remaining 186 SSR-
containing sequences, no ORF were predicted. Of these
359 SSRs, a large number of 161 (44.84%) were present
in the 5’ untranslated region, 129 (35.93%) SSRs occurred
within ORE, and the remaining 69 (19.22%) occurred in
the 3’ untranslated region.

DISCUSSION

In the present study, a large number of nucleotide
sequences (4698) of Gentiana retrieved from NCBI were
mined for SSRs. In the sequences that were mined the
SSRs were characterized, and a subset of these SSRs was
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Figure 2: Frequency distribution of (a) mono-, (b) di-, (c) tri-, and (d) hexanucleotide repeat motifs in the genome of Gentianaceae

Table 1: Summary of in silico mining of
Nucleotide sequences of Gentianaceae

Values

Total number of sequences searched 4698
Total number of SSRs after removing poly A and poly T 545

Parameters

Total size of examined sequences (bp) 2289303
Total number of sequences containing single SSRs 429
Number of sequences containing two SSRs 99
Number of sequences containing three SSRs 15
Number of sequences containing six SSRs 2
Number of sequences containing more than one SSR 57
Number of SSRs present in compound formation 47
Repeat type

Mononucleotide 429 (84.58)
Dinucleotide 99 (18.16)
Trinucleotide 15(2.75)
Hexanucleotide 2 (0.65)

Data in parentheses is the percentage value of the repeat

used for designing the markers. A total of 545 SSRs was
detected and this was in accordance to the findings of® who
reported that the abundance of different repeats varied
broadly depending upon the species.

Microsatellites or SSRs are stretches of DNA containing
tandem repeats of di-, tri-, tetra-, and above nucleotide
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units ubiquitously distributed throughout the eukaryotic
genome. They are found to be abundant in plant genomes
and are thought to be the major sources of genetic
variation in quantitative traits. The abundance of the
different repeat motifs (1—6 bp) in the SSRs as detected in
Gentiana family during the present study was variable so
that the SSRs with different repeat motifs were not evenly
distributed. The SSRs with dinucleotide repeats (18.16%)
were abundant. This is in agreement with the results of
earlier studies on Arabidopsis in which the dinucleotide
repeats wete also found to be abundant,”” perhaps because
the genomic sequences of this species may include SSRs
in noncoding regions too. The smaller repeat motifs were
found to be predominant among SSRs identified and
as the length of repeat unit increases, their occurrence
decreases. We excluded poly A and poly T repeats due to
which their number is under-represented. The abundance
of trinucleotide SSRs may be attributed to the absence
of frame shift mutations due to variation in trinucleotide
repeats.?l

Molecular genetic markers can be used to examine a group
of individuals or populations to estimate various diversity
measures and genetic distances, intergenetic structure and
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clustering patterns, test for Hardy-Weinberg equilibrium
and multilocus equilibrium, and to test polymorphic loci
for the evidence of selective neutrality. This can be useful
to plant breeders, germplasm managers, or others who are
interested in population genetic properties of materials that
they are working with. The three most common types of
markers used today are RFLP, RAPD, and microsatellites.
A wide variety of methods for the construction of libraries
enriched for microsatelite sequences have been reported,
the most popular among those being the ones based on
vectorette PCR using anchored primers. But this method is
highly time-consuming and expensive, and the alternative
is to use bioinformatics, that is, computational tools to
screen the public database and find SSR. EST-derived
molecular markers, especially SSR and SNP, are highly
useful in developing linkage maps and markers assisted
breeding programs. These markers are also transferable
to related genera.

Molecular marker techniques are advantageous as they
directly reflect variations in the DNA sequences and
therefore of independence of environment. Among
many molecular marker techniques currently available,
microsatellites and SSRs P provide an improved technology
in assessing genetic diversity and genetic relationships in
plants as they are highly polymorphic, codominants, very
informative, and PCR based. EST-SSRs offer the following
advantages over other genome DNA-based markers: (1)
they should detect variation in the expressed portion of
the genome so that gene tagging should give “perfect”
marker—trait associations; (2) they can be developed at
no cost from the EST databases; and (3) once developed,
these markers, unlike genomic SSRs, may be used across a
number of related species. With the growth of sequence
databases, several authors have reported an abundance of
SSRs in different genomes. The Distribution of SSRs in
the rice genome has also been studied on the basis of the
two whole genome draft sequences released, respectively,
by Syngenta and by the Beijing Genome Institute (BGI).
In the draft sequence released by Syngenta, for instance,
48,351 SSRs (including di-, tri-, and tetranucleotide repeats)
were available, giving a density of 8 kb per SSR in the whole
genome; SSRs represented by di-, tri-, and tetranucleotide
repeats accounted respectively for 24%, 59%, and 17% of
the total SSRs.

SSRs are very polymorphic due to the high mutation
rate affecting the number of repeat units. Such length-
polymorphisms can be easily detected on high-resolution
gels (e.g., sequencing gels), by running PCR-amplified
fragments obtained using a unique pair of primers flanking
the repeat.’” Chung and StaubP” developed a set of
consensus chloroplast primer pairs for ccSSRs from N.
tabacum chloroplast sequences. All primer pairs produced

Pharmacognosy Research | January 2011 | Vol 3 | Issue 1

amplicons after PCR employing chloroplast DNA from
members of the Cucurbitaceae (six species) and Solanaceae
(four species). Sixteen, 22, and 19 of the initial 23 primer
pairs were successively amplified by PCR using template
DNA from species of the Apiaceae (two species), Brassicaceae
(one species), and Fabaceae (two species), respectively.
Twenty of the 23 primer pairs were also functional in
three monocot species of the Li/iaceae (onion and garlic),
and the Poaceae (0at). ccSSR primers were strategically
"recombined" and referred to correctly as recombined
consensus chloroplast primers (RCCP) for PCR analysis
of cucumber DNA such that the primers designed for
the SSR-containing genus of Gentiana family would be
utilized for the production of amplicons from different
members of family.

Kijas ez alP tested two primer sets in 10 different Citrus
species and two related genera and found conservation
of the sequences. Cross-species amplification has also
been reported between cultivated rice and related wild
species™ and between 17#s species.*! Provan ez a/.*! could
show successful amplification of two tomato SSR primer
pairs tested on potato cultivars. Weising e a/,.*? reported
conservation of SSR flanking sites in different species of
kiwifruit (Aetinidia chinensis). Usually, a low percentage of
markers also amplified fragments from species belonging
to other genera from the same family. Within the Poaceae
family, primers worked even across different genera,*’! but
only 50% of microsatellite loci identified in wheat were also
polymorphic in tye and barley cultivars. Whitton ez a/*"
tested 13 SSR loci in 25 representatives of the Aszeraceae,
where it was demonstrated that the regions flanking in the
repeats are not highly conserved, neither in the nucleotide
sequence nort in the relative position.

Indeed, in general, transferability of polymorphic markers
in plants is likely to be successful mainly within genera
(success rate close to 60% in eudicots and close to 40%
in the reviewed monocots) rather than between genera
(transfer rates are approximately 10% for eudicots) within
the same family.*! This transferability of polymorphic
markers nature in plant generally enhances the utilization
of the primers in random way. Comparative genome
analysis facilitates high-throughput comparative mapping
with the assistance of cross-species markers, and further
facilitates gene cloning by identifying cross-reference genes.
Seventeen SSR primer sets developed for Quercus petraea
were tested on eight different members of the Fagaceae
family.* In total 66% resulted in interpretable amplification
products and most of them were really homologous to the
originally cloned SSR fragment from Q. petraca. The primers
could be designed successfully for a very large number (169,
31%) of SSRs [Table 2]. However, it was not possible to
design the primers for remaining SSRs (376, 69%0) because
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the sequence flanking at both ends of the SSRs was
inadequate in size to design the primers. The large number
of primer pairs for the SSRs that have been designed during
the present study may be utilized for a variety of purposes,
for example, gene tagging, genetic mapping, population
studies, etc. Due to a high level of potential for length
polymorphisms, SSRs have become a valuable source of
genetic markers and have been broadly applied to various
areas of genetic research including studies of genome
variation, establishment of genetic maps, integration of
physical and genetic maps, determination of evolutionary
relationships, and comparative genome analyses.

CONCLUSIONS

Nucleotide sequences of Gentiana family were systematically
searched for SSRs using the “ssr_finder.pl” petl program
for the development of SSR markers. This is a valuable
approach for both costs and time, given a sufficient amount
of available Gentiana family sequences. The use of SSRs in
genetic diversity studies is a novel tool that reveals variation
in genomes.
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