TY - JOUR T1 - Nucleotide Sequence of Phaseolus Vulgaris L. Alcohol Dehydrogenase Encoding cDNA and three-dimensional Structure Prediction of the Deduced Protein JF - Pharmacognosy Research Y1 - 2015 A1 - Kassim Amelia A1 - Chin Yin Khor A1 - Farida Habib Shah A1 - Subhash J Bhore KW - BAT93 KW - Common Bean KW - Homology Modeling KW - Molecular Modeling KW - Phaseomics KW - Protein KW - Protein Structure Prediction AB -

Background: Common beans (Phaseolus vulgaris L.) are widely consumed as a source of proteins and natural products. However, its yield needs to be increased. In line with the agenda of Phaseomics (an international consortium), work of expressed sequence tags (ESTs) generation from bean pods was initiated. Altogether, 5972 ESTs have been isolated. Alcohol dehydrogenase (AD) encoding gene cDNA was a noticeable transcript among the generated ESTs. This AD is an important enzyme; therefore, to understand more about it this study was undertaken. Objective: The objective of this study was to elucidate P. vulgaris L. AD (PvAD) gene cDNA sequence and to predict the three-dimensional (3D) structure of deduced protein. Materials and Methods: positive and negative strands of the PvAD cDNA clone were sequenced using M13 forward and M13 reverse primers to elucidate the nucleotide sequence. Deduced PvAD cDNA and protein sequence was analyzed for their basic features using online bioinformatics tools. Sequence comparison was carried out using bl2seq program, and tree-view program was used to construct a phylogenetic tree. The secondary structures and 3D structure of PvAD protein were predicted by using the PHYRE automatic fold recognition server. Results: The sequencing results analysis showed that PvAD cDNA is 1294 bp in length. It's open reading frame encodes for a protein that contains 371 amino acids. Deduced protein sequence analysis showed the presence of putative substrate binding, catalytic Zn binding, and NAD binding sites. Results indicate that the predicted 3D structure of PvAD protein is analogous to the experimentally determined crystal structure of s-nitrosoglutathione reductase from an Arabidopsis species. Conclusions: The 1294 bp long PvAD cDNA encodes for 371 amino acid long protein that contains conserved domains required for biological functions of AD. The predicted deduced PvAD protein's 3D structure reflects the analogy with the crystal structure of Arabidopsis thaliana s-nitrosoglutathione reductase. Further study is required to validate the predicted structure.

VL - 7 IS - 2 ER -